Metadata Records Irrigation Innovation Consortium-Supported Project Datasets

Please use a separate sheet for each dataset. Answers are automatically saved.

Questions? Contact Diane DeJong: diane.de_jong@colostate.edu.

Question	Answer
Project name	Integration of Mobile Drip and Variable Rate Irrigation Technologies for Specialty Crop
	Vegetable Production
Project background	Melon production shows great potential in the Southern High Plains as an alternative to
	traditional field crops, where farm revenue can be maintained or increased while using
	substantially less water. This is important because less water is available from the Ogallala
	Aquifer, but irrigation is essential to maintain crop production and stabilize crop yield in the
	semiarid climate of the Southern High Plains, especially in light of the pressures of climate
	change. LESA and MDI are modern and efficient irrigation methods, and already show
	potential for high crop water productivity for melons. New irrigation management tools used
	in conjunction with variable rate irrigation (VRI) are being developed based on soil water and
	plant temperature sensing. These new management tools can automate LESA and MDI,
	apply water at the right place and the right time, save water and energy, and save time
	incurred for irrigation management.
Dataset name	Economic Analysis
Primary author	Andrea Leiva Soto, TAMU, andrea.leivasoto@ag.tamu.edu
Include first & last name, institution affiliation, and email address.	
Primary contact	Qingwu Xue, TAMU, qingwu.xue@ag.tamu.edu
The primary contact may be the same or different from the primary author.	
Include first & last name, institution affiliation, and email address.	
Dataset description	This dataset contains crop yield, input costs, and econoimic returns in watermelon
Please provide a brief, clear summary description of the dataset contents. Indicate as	production in 2022 and 2023 growing seasons.
applicable: purpose and scope; time period; areas of investigation; and any other special	
characteristics.	
Spatial coverage	35°09'N, 102°05'W, Bushland, Texas.
Please be specific as possible about the geographic coverage of your data, and record the	
information according to defined standards, such as FGDC or the Getty Thesaurus of	
Geographic Names. You can enter lat/long data, county names, state names, etc.	
Temporal coverage	2022 - Start Date: 5/26, Finish: 9/16; 2023 - Start Date: 5/17, Finish: 9/29.
Describe the temporal coverage of your dataset:	
Start: Time of day, Date, Month, Year	
Finish: Time of day, Date, Month Year	

N/A	
14/1	
Lamm, F.R., P.D. Colaizzi, R.B. Sorensen, J.P. Bordovsky, M. Dougherty, K. Balkcom, D.	
Zaccaria, K.M. Bali, D.R. Rudnick, and R.T.Peters. 2021. A 2020 vision of subsurface drip	
irrigation in the U.S. Trans. ASABE, Vol. 64(4): 1319-1343 doi.org/10.13031/trans.14555.	
Leiva Soto, A., Q. Xue, R. Adhikari, C. Rush, S. O'Shaughnessy, and P. Colaizzi. 2022.	
Evaluation of Mobile Drip Irrigation for Watermelon Production in the Texas High Plains. ASA-	
CSSA-SSSA International Annual Meeting. November 6–9, 2022, Baltimore, MD.	
water use efficiency; drip irrigation; Texas; specialty crops; vegetable growing; watermelons	
, , , , , , , , , , , , , , , , , , , ,	
variable rate irrigation; mobile drip irrigation	
LESA - low energy spray application; LEPA - low energy precision application; MDI - mobile	
drip irrigation; VRI - variable rate irrigation; WUE - water use efficiency; ISSCADA - Irrigation	
Scheduling and Supervisory Control and Data Acquisition; DI - traditional surface drip	
irrigation; IRT - infared thermometers; USDA- ARS - United Stated Department of Agriculture -	
Agricultural Research Service; iCWSI - integrated crop water stress index; VFIC - Texas	
Vegetable and Fruit and Improvement Center;	
Thank you!	